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ABSTRACT: The ordering dynamics of directed self-assembly of cylinder-forming diblock copolymers is
studied by cell dynamics simulations. The directing field, mimicking chemically or topologically patterned
substrates, is in the form of hexagonally arranged potential wells attractive to minority blocks. Time
evolution of the defect concentration is used to characterize the ordering dynamics of the self-assembled
cylindrical structures of the block copolymers.When the period of the external potential,Ls, is a small integer
multiple of the cylinder-to-cylinder distance,L0, of the block copolymermicrophase, the defect concentration
decays exponentially. The defect annihilation becomes slower as Ls is increased, and eventually, the
exponential decay law is broken. When the ratio Ls/L0 is a square root of an integer, large polycrystalline
grains with different orientations are observed. The results are consistent with available experimental and
theoretical results.

I. Introduction

The self-assembly of block copolymers (BCPs) as a potential
candidate of functional materials has received tremendous atten-
tion in recent years.1-8 In semiconductor technology, standard
photolithography is becoming expensive for the manufacturing
of sub-30-nm patterns as it approachs the intrinsic technological
limits. The demand for higher-density features for improved data
storage and computing speed makes researchers turn to the self-
assembly of BCPs, which spontaneously form periodic patterns
on the length scale of nanometers. Even for the simplest BCPs,
diblock copolymer, lamellar, gyroidal, cylindrical, and spherical
microstructures can form by tuning the relative composition of
the two blocks.9 Lithography in practical applications of high-
performance functional materials requires long range of order,
very low density of defects, and uniform domain shapes. Un-
fortunately, the perfect periodic domain ordering is usually
destroyed by the appearance of defects. For example, the grain
boundary between lamellae with mismatch orientations usually
appears in the lamellar phase; the defects of dislocation and
disclinations can destroy the translational and orientational
order in thin films of hexagonally arranged cylinders (or spheres)
formed byBCPs. Vinals and coworker have performed a series of
research on grain boundary dynamics and defect dynamics in
bulk lamellar phase.11-13 The study of both experiments10,14,15

and computer simulations16,17 shows that the orientation corre-
lation length grows with time according to a power law with an
exponent of 1/4 in cylinder- or sphere-forming system. Therefore,
formacroscale thin films (frommicrometers tomillimeters) on an
uniform substrate, the relaxation time to annihilate all defects is
infinitely long. Additional techniques are required to obtain
improved ordering in BCP films.

A wide range of techniques, including shear,18 electric fields,3

thermal gradients,19,20 solvent annealing,21 flow,22 grapho-
epitaxy,23-25 and chemical prepatterning,26,27 has emerged to

improve the order of the self-assembly microstructures in BCP
films. For example, Kim et al. obtained PS-b-PMMA lamellar
structures with a long-range order under the direction of chemi-
cal-prepatterned substrates.26 In this prepatterning method, it is
disadvantageous that the substrate patterns have a very close
period with the natural period of lamellar structure, which
challenges the e-beam lithography. Recently, a significant pro-
gress has been made using the graphoepitaxial techniques to
induce higher degrees of ordering perfection. Ruiz et al. deve-
loped a directed assemblymethodwithwhich the self-assembly of
BCPs can be used to interpolate the chemical patterns and rectify
the pattern quality.28With the interpolation of chemical patterns,
one only needs to produce a sparser pattern of round spots with
an e-beam than the microdomain array itself. With similar
techniques, Cheng et al. obtained an interpolation for lamellar
structures with up to four times the period of the lamellae;29 Tada
et al. did a careful study on the interpolating effect for length ratio
of chemical-pattern spacing to the period of BCPs and other
conditions.30 Their results show that the interpolating effect is
sensitive to the length ratio. When the length ratio slightly
deviates from an integer multiple (such as -5 or þ10%), small
density of dislocation or disclination defects can form. Bita et al.
demonstrate another effective graphoepitaxial method to direct
the self-assembly of BCP thin films.32 They use sparse arrays of
posts to induce graphoepitaxially long-range order of hexagon-
ally packed spheres formed by PS-b-PMMABCPs. The carefully
designed posts, which are chemically and physically nearly
distinguishable, act as surrogate spherical or cylindrical domains
of the minority of the BCP. Extremely high degrees of transla-
tional and orientational order are achieved when the length ratio
of the post-to-post distance to the BCP domain spacing varies
from 1.65 to 4.6 multiples.

Theoretical research on the graphoepitaxial method to direct the
self-assembly of BCP thin films is very limited, although many
experiments have been carried on this topic. A Monte Carlo
simulationwas carried to study the self-assemblyof cylinder-forming
diblock copolymers on chemically nanopatterned substrates with
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hexagonal, stripe, and square patterns by Wang et al.33 Long-
range ordering can be achieved when two conditions are
satisfied: a lower hexagonally patterned substrate and commen-
surate pattern spacing with the period of the cylinder-domain
array. Edwards et al. did a single-chain-in-mean-field simula-
tions to investigate the formation of lamellae directed by strip-
patterned substrate.34 To the best of our knowledge, the study on
the ordering dynamics of the graphoepitaxially directed assembly
of BCP thin films is lacking. The knowledge of the ordering
dynamics is helpful to understand the self-assemblingmechanism
of BCPs on the chemical or physical nanopatterned substrates;
therefore, it can help experiments to develop more efficient
techniques

In this work, we investigate the microdomain ordering dyna-
mics directed by a 2D hexagonal array of round chemical-
potential wells in cylinder-forming diblock copolymer thin films.
The potential wells, with center-to-center distance of Ls, have a
preferential interaction with the minority block of the BCPs. The
commensurability parameter, Ls/L0, where L0 is the cylinder-
to-cylinder distance of the diblock copolymers in bulk, is themain
factor that influences the degree of ordering perfect. To focus on
the influence of the length ratio parameter Ls/L0 on the ordering
dynamics, we simplify the thin films to a 2D system with a
translational symmetry normal to the surface. This simplifica-
tion, which neglects the effect of the thickness of the films, can be
applied to experimental systems with appropriate film thickness
and field strength where perpendicular cylinders are formed
on the substrate.30,31 Tomake our simulation results comparable
to experimental results, we consider a system size as large as
micrometers by micrometers, where more than 10000 domains
form.

Simulation of large systems is enabled by the application of cell
dynamics method. The cell dynamics simulation (CDS) method
based on the time-dependent Ginzburg-Landau (TDGL) equa-
tion has been used extensively to simulate phase separation
dynamics because it was introduced to the study of phase
separation of polymer blends and diblock copolymers by Oono
and coworkers.35-37 The CDS method applies a coarse-grained
discretization of the TDGL equation. The time evolution of the
order parameter, which is the volume fraction of one component
in the diblock copolymermicrophase separations, is evaluated on
a lattice according to the local driving force due to chemical
potential gradients and the diffusive dynamics from order para-
meter variations in neighboring cells. The CDS method has
high computational efficiency compared with other dynamical
simulation methods, such as dissipative particle dynamics simu-
lations38 and dynamic density functional simulations.39 There-
fore, it is suitable to study such large system.

II. Model and Theory

We consider an incompressible asymmetric AB diblock copo-
lymers with equal monomer size. Each copolymer has identical
volume fraction f = 0.35 of A block. A hexagonally arranged
cylindrical phase can form when microphase separation occurs.
The dynamics of microphase separation for diblock copoly-
mers can be described by the following TDGL equation for
a conserved order parameter36

∂φ

∂t
¼ Mr2∂F ½φ�

∂φ
þ ηðr, tÞ ð1Þ

where the order parameter φ is chosen as the local compo-
sition difference between A and B components, M is a pheno-
menological mobility coefficient, set as M =1, F[φ] is the
free energy functional for diblock copolymers, and η(r, t) is a
random noise term, with zero average and a second moment of

Æη(r, t)η(r0, t0)æ= -η0Mr2 δ(r-r0) δ(t-t0); here η0 is the noise
strength. The free energy functional F[φ] includes a short-range
term and a long-range term. After introducing an external field,
Hext(r), the expression of F[φ] can be written as

F ½φ� ¼ FGL½φ� þR
2

Z
dr
Z

dr0 Gðr- r0Þ δφðrÞ δφðr0Þ

þ
Z

dr HextðrÞφðrÞ ð2Þ

where δφ(r)= φ(r)- φh, and φh=2f-1 is the average value ofφ(r)
over the 2D space. The first term can bemodeled by aGinzburg-
Landau free-energy functional40

FGL½φ� ¼
Z

dr
1

2
ðrφÞ2 þWðφÞ

� �
ð3Þ

whereW(φ) is the local contribution of the interaction.According
to the functional derivative in eq 1, one needs the derivative of
W(φ). We choose W(φ) as

dW

dφ
¼ -A tanhðφÞþφ ð4Þ

with A = 1.3. The second term of expression 2 with a positive
constant R results in a long-range repulsive interaction and is
inherent tomicrophase separation. ThereforeR is themain factor
influencing the characteristic wavelength, that is, the cylinder-
to-cylinder distance of L0 in our system. Larger R gives smaller
L0. SmallL0 indicates less points for each microdomain when the
grid spacing is fixed. However, large L0 reduces the number of
microdomains for fixed lattice sizes. To keep L0 reasonable for
our simulations, we choose R = 0.02. For the case of diblock
copolymers, the form of G(r-r0) can be expressed as41

-r2Gðr- r0Þ ¼ δðr- r0Þ ð5Þ
After inserting eqs 2-5, the dynamic equation becomes

∂φ

∂t
¼ r2f-Mr2φðr, tÞ-A tanh½φðr, tÞ� þ φðr, tÞ

þHextðrÞg-R δφðr, tÞþ ηðr, tÞ ð6Þ
According to the chemical patterns made by experiments,28,30

we choose a hexagonally arranged array of external potential
wells with center-to-center distance of Ls (schematic Figure 1),
which is typically larger than the periodL0 of diblock copolymers.

Figure 1. Schematic plot of the hexagonal array of the potential wells.
The blue color indicates the regions where the minority block is
preferred, and the red regions do not have preference to both block.
Ls gives the center-to-center distance of the potential wells. The periods
along x and y directions are

√
3Ls and Ls, respectively.

http://pubs.acs.org/action/showImage?doi=10.1021/ma9023203&iName=master.img-000.jpg&w=144&h=122
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The potential around these blue spots is chosen to be a hyperbolic
tangent form

HextðrÞ ¼ -
1

2
V0ftanh½ð-jr-Rij þ σÞ=λ� þ 1g ð7Þ

for |r - Ri| e 2σ and otherwise Hext(r) = 0 (the red area in
Figure 1). In the above expression of the potential, a positive value
ofV0 gives the strength of the field, which is preferential to minor
A block. The magnitude of V0 determines how much A compo-
nent is attracted to the potential-well areas. Too small V0 can not
influence the self-assembling of cylinders. In our simulations,
V0=0.04 is large enough to direct a long-range order of cylinders
for appropriateLs/L0. WhenV0 = 0, the system is reduced to the
thin films on a uniform substrate. Ri indicates the position center
of potential well i, and σ characterizes the radial size of the well.
The diameter of the well with field strength Hext = -V0/2 is 2σ.
The value of σ is set as 0.15L0, which is comparable to the size of
the cylinders in bulk. The parameter of λ=0.5 gives the steepness
of the potential near the well edge. Smaller value of λ corresponds
to steeper potential change at the well edge. The potential form is
cylindrically symmetric in the 2D film surface and is invariant
along the normal direction of the film for each well.

Here we adopt the notation of the form Æijæ to characterize the
multiplying property of the periodic field as ref 32 does, with
which the basis vector of the potential-well lattice is equal to the
sum of integer multiples i and j of the two 60�-oriented basis
vectors of the BCPmicrodomain lattice. The ratio ofLs/L0 can be
readily determined as (i2 þ j2 þ ij)1/2, and the angle θ, which
describes the relative orientation of the BCPmicrodomain lattice
to the potential-well lattice, is given by

θ ¼ arccos
2iþ j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 þ j2 þ ij

p
 !

or

θ ¼ -arccos
2iþ j

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 þ j2 þ ij

p
 !

ð8Þ

Thepositive and negative angles refer to two relative orientations.
When one of i and j is zero (such as Æ20æ, Æ30æ, Æ40æ, and so on),
Ls is an integer multiple of L0, and the absolute value of θ is 0
or 60�. Consequently, positive and negative angles are equivalent
for hexagonal lattices, and both of them indicate that the
potential-well lattice and themicrodomain lattice have consistent
orientation.Otherwise, when i 6¼ j,Ls is a square root of an integer
multiple ofL0, and the absolute value of θ is between 0 and 60�. In
this case, the two angles give two different relative orientations.
For example, for <21>, Ls/L0 =

√
7 and θ ≈ (19.1�. For this

potential-well lattice, two possible orientations of the BCPmicro-
domain lattices can appear simultaneously to form polycrystal-
line arrays, which have been observed by experiments.32

In our simulations, the 2D film is divided into a Nx � Ny grid
with unit cell size of Δx = Δy = 1. The values of Nx and Ny are
determined byNx=

√
3nx

sLs andNy= ny
sLs, where nx

s and ny
s are

the period numbers of the potential-well array along the x and y
directions (nx

s =3 and ny
s =2 inFigure 1). Tokeep the system size

large enough to form >104 cylinders (including the spots
themselves), nx

s and ny
s are chosen to ensure that either Nx or Ny

is >850 in all simulations. For the case of V0 = 0, fixed Nx =
1024 and Ny = 1024 are used. Periodic boundary conditions are
imposed on the simulated rectangle box. Following the discreti-
zation scheme in the cell dynamics,35,37 the Laplacian is replaced
by the average

r2X ≈ 1

6

X
n:n

X þ 1

12

X
n:n:n

X -X ð9Þ

where n.n (n.n.n) means the summation over the (next-) nearest-
neighbor cells. Initially, we put the system in a high-temperature
uniform state by initializing the order parameter with small
random fluctuations in the simulations. At t=0, we quench the
system below the phase-separation temperature.

III. Results and Discussion

To set an appropriate value ofLs relative toL0, we first need to
estimateL0 for the chosen parameters of the diblock copolymers.
L0 can be determined by the position of the main peak of the
circularly averaged scattering function kS(k, t) for diblock
copolymer thin films on an uniform substrate of V0 = 0. The
lattice constant is determined to be L0 = 9.20 in our simulations.
In the literature,15-17 the orientational correlation length ξ6,
defined by the roughly exponential decay of the orientational
correlation function g6(r, t), is used to measure the ordering
dynamics of cylinder-forming diblock copolymers. Here we use
an alternative quantity, the defect concentration, to characterize
the ordering dynamics. There are two reasons for this choice.
One is that the number of defects can be calculated directly from
the density profiles for required time steps, and it is comple-
mentary to the correlation/orientational-correlation length in
describing the ordering degree. The second reason is that the
ordering process of the microdomain arrays after being imposed
by the field pattern becomesmuch faster than that in bulk, and in
consequence, the orientational correlation function has larger
fluctuations for the case of low defect concentration. It is difficult
to determine the orientational correlation length from the process
of data-fitting. Although large fluctuations definitely appear in
the results of the defect number as well, we can conveniently
estimate its error by statistical method, and control it within the
acceptable range by increasing statistical samples. The defect
concentration as a function of time is defined as fDF(t) = nDF(t)/
nMD(t)� 100%, where nDF(t) and nMD(t) are the total number of
defects andmicrodomains at time t, respectively. The function of
fDF(t) is calculated by averaging data on 8-16 independent
simulated samples. More samples are simulated to collect data
for the systems with lower defect concentrations; for example,
16 samples are used in the case of Ls/L0 = 3.

As a reference of the results of V0 6¼ 0, the temporal evolution
of the defect concentration, obtained from the density profiles in
the case of uniform substrate, is shown in Figure 2, and three
typical density profiles and the corresponding profiles of their
orientational order parameter ψ(r), which is defined as ψ(r) =
exp[6iθ(r)] where θ(r) is the local interdomain “bond” orienta-
tion,15,16,42 are shown in Figure 3. For the reason of clarity, 1/4 of
the area of the whole 1024� 1024 region is shown. There are two
main steps during the standard data processing: calculating the

Figure 2. Time evolution of the defect concentration for the case of
uniform substrate. Two solid lines correspond to the best-fit power laws
for short- and long-time processes.

http://pubs.acs.org/action/showImage?doi=10.1021/ma9023203&iName=master.img-001.png&w=199&h=148
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vertex of each microdomain and conducting the Delaunay trian-
gulation with these vertexes.16 With the Delaunay triangles, the
defects can be readily collected by the rule that the number of their
connected bonds is not equal to six. That most of defects have five
or seven coordinated cylinders in our results is consistent with the

observations of the literatures.15,16 When collecting the data of
defects, we do not distinguish five, seven, or other coordinated-
cylinder defects, and only the total number of defects is recorded.
The error bars of the data in the evolution function of defects is
obtained by averaging on eight independent simulated samples.
Similar properties of defects and grains, which have been carefully
discussed in refs 15 and 16, can be seen in our results. For example,
a line of dislocations delimiting two grains with a large-angle grain
boundary (the largest red grain and its right neighbor green grain
in the bottom-right figure) has been observed. From the double-
logarithmic plot of Figure 2, we can see that there are two
evolution stages. The defect concentration as a function of time
obeys a power law fDF(t) ≈ t1/3 for the time shorter than 105 and
fDF(t) ≈ t1/5 for the time from 105 to 106. A similar two-stage
dynamic process has also been seen in ref 42. The short-time
behavior can be understood by the coarse-graining mechanism
that small domains are absorbed by larger domains.43 The
exponent of 1/5 for the long-time dynamics is consistent with the
results in the literature.15,16,42 They found exponents of about 1/5
for the correlation length ξS(t) and 1/4 for the orientational
correlation length ξ6(t). Details about the coarsening process in
this term can be found in the literature.15,16 The defect concentra-
tions for the density plots at t= 104, 105, and 106 in Figure 3 are
(22.9 ( 0.4), (11.1 ( 0.3), and (6.9 ( 0.2)%, respectively.

First, we examine the BCP self-assembly on the field-patterned
substrate with field patterns of Æi0æ, where Ls/L0 = i. The defect
concentrations as a function of time for i= 3, 4 and i= 5, 6 are
plotted in Figure 4a,b, respectively. The parameters of the lattice
are (nx

s , ny
s,Nx,Ny)= (20, 32, 956, 883) for Æ30æ, (nxs , nys,Nx,Ny)=

(15, 24, 956, 883) for Æ40æ, (nxs , nys,Nx,Ny) = (12, 20, 956, 920) for
Æ50æ, and (nxs , nys,Nx,Ny) = (10, 16, 956, 883) for Æ60æ. The results
for Æ30æ, Æ40æ, Æ50æ, and Æ40æ, are obtained by averaging on 16, 10,
8, and 8 samples, respectively. As the defects are annihilating, the
fluctuation of the number of defects becomes large, and in
consequence, the relative error becomes large. We can estimate
the real size of the simulated box by relating L0 to that of some
experimental data. For example, L0 = 40 nm in ref 32 (PMDS
sphere-to-sphere distance in PS matrix), and the lattice of Nx �
Ny =956� 883 with L0 = 9.20 lattice corresponds to a real size
of about 4.1� 3.4μm2. It is larger than the typical size 2 μmof the
defect-free arrays observed in experiments.32 The logarithmic
linear plot of Figure 4a suggests that the defect concentrations for
Æ30æ and Æ40æ have an exponential decay with time, which is
substantially faster than that on the uniform substrate. Appar-
ently, the process of the defect annihilation becomes slow as the
field-spot lattice becomes sparse. For Æ30æ, a pefect order of
microdomains is achieved, whereas all defects are annihilated
before t < 105. However, the perfect-ordering process is done
until t ≈ 3 � 105 for Æ40æ. According to this tendency, we can

Figure 3. Typicalmonomer density plots (left column) and correspond-
ing distribution maps (right column) of local lattice orientation where
the colors of the spectrum indicate a range from 0 to 60�. For the
monomer density plots, light-red (or yellow) color indicates high density
of the minority block. From top to bottem, the time is t=104, 105, and
106, respectively.

Figure 4. Time evolutions of the defect concentrations of the cylinders formed on field-patterned substrates. Note that (a) Ls/L0= 3 and 4 are plotted
in a logorithmic-linear form and (b) Ls/L0 = 5 and 6 are plotted in a double-logorithmic form together with the result of the uniform substrate.

http://pubs.acs.org/action/showImage?doi=10.1021/ma9023203&iName=master.img-002.jpg&w=240&h=384
http://pubs.acs.org/action/showImage?doi=10.1021/ma9023203&iName=master.img-003.jpg&w=316&h=151
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predict that the perfect-ordering time must be very short when
Ls/L0 = 2 or Ls/L0 =

√
3. It has been proven in our simulations

that the time is shorter than 2� 104 for Æ20æ, and this is the reason
that its fDF(t) is not given in Figure 4a.WhenLs/L0 is increased to
be larger than 4, such as 5 and 6, the relation of the exponential
decay can no longer be observed in Figure 4b. The fDF(t) for Æ50æ
has a similar power law as that on the uniform substrate at the
short time and has a power lawwith an exponent of∼0.62 for the
long time. For Æ60æ, the fDF(t) on the whole time scale is quite
similar to that on the uniform substrate.

In chemical-patterned films, the areas of potential wells attract
A component to form cylinders quickly; then, these early
formed cylinders with fixed positions act as soft confinement to
their neighbor cylinders. The confinement can help other “free”
cylinders to be arranged according to the orientation of the
potential-well lattice. When the potential wells are denser (Ls/
L0 e 4), the confinement from earlier formed cylinders has
stronger influence on the arranging of “free” cylinders. In
addition, according to the coarsening mechanisms given by refs
15 and 16, the slowing down of the coarsening process is induced
by the formation of polycrystalline grains, which are delimited by
lines of dislocations with a pair of 5 and 7 coordinated-cylinder
defects. It is pointed out that the average distance DDL between
neighbor dislocations is ∼2.5L0. This indicates that only single
dislocationor a couple of dislocations canbe formed locally at the
initial quenching stagewhenLs/L0e 4. Small grains without long
dislocation-connected grain boundaries are easy tobe annihilated
by thermal fluctuations during the temporal evolution because
of the high interfacial energy penalty. When the field patterns
become sparse, that is, Ls g 2DDL, more dislocations can be
formed locally. This allows large grains with mismatched orien-
tations to form. When these grains grow larger than their critical
nucleation size, they continue growing and thus can be hardly
annihilated by thermal fluctuations. The exponential decay of the
defect concentration for Ls/L0 e 4 can be derived from a pheno-
menological model. As the BCP domain lattice is divided into
small pieces by the potential wells, it can be coarse-grained as a
continuous and uniform system for the defect evolution. There-
fore, the defect annihilating dynamics depends on its local density,
-dnDF(r, t) dt � nDF(r, t). With the assumption of uniformity
on the coarse-grained scale, we can obtain nDF(t) ≈ exp(-Ct),

where C is a constant. Figure 5 shows the typical orientation
distributions of BCP domain array for Æ40æ (left column) and for
Æ60æ at t=104 (upper row) and 105 (bottom row). These red grains
have mismatch orientations with that of the field pattern. We can
see that the average size of red grains in Figure 5a of Æ40æ is smaller
than that in Figure 5b of Æ60æ. At time t=105, the whole region in
Figure 5c of Æ40æ becomes nearly order with a low defect concen-
tration (∼1.7%). However, in Figure 5d of Æ60æ, somemisoriented
grains grow to be large, and the defect concentration is still as high
as ∼11.4%. The conclusion that perfect ordering can be achieved
when Ls/L0 e 4 is similar to the observations in experiments.32 In
experiments, large defect-free arrays are observed with Ls/L0 e 3,
not our Ls/L0 e 4. The small discrepancy between our theoretical
results and experimental results can be resulted by a small
incommensurability between the field pattern and theBCPdomain
lattice, which can be hardly avoided by experiments. The tolerance
of the incommensurability by the field-patterned film is discussed
in the following paragraph.

We turn to examine the field-pattern lattice of Æijæwith nonzero
i and j. For this kind of field pattern, the exact spacing ratio,
determined by (i2 þ j2 þ ij)1/2, is not an integer; therefore, the
induced BCP domain array has two candidate orientations
relative to the field-pattern lattice. Only when i = j are the two
orientations of θ=30and-30� are equivalent. Two typical field-
spot lattices of Æ21æ (Ls/L0 =

√
7 and θ = (19.1�) and Æ32æ (Ls/

L0 =
√
19 and θ = (23.4�) are simulated here. In the simula-

tions, decimal values ofLs/L0= 2.646 and 4.360 are used for Æ21æ
and Æ32æ, respectively. The dynamic evolution functions of the
defect concentration of fDF(t) are shown in Figure 6. The result
from the uniform substrate is given as a comparison (solid line).
The function fDF(t) of Æ21æ with lower initial value and higher
final value is slower than that of Æ32æ. The field-pattern lattice of
Æ21æwith earlier formed cylinders at the potential wells and hence
results in lower initial defect concentration than Æ32æ. The
difference of the coarsening speed is due to the differentmismatch
angle between two kinds of grains in the two field-pattern lattices.
The mismatch angle is 21.8� for Æ21æ and 13.2� for Æ32æ. The
dislocations on the grain boundary with larger mismatch angle
have lower mobility. In addition, after a long time annihilating
process, the systemhas higher defect concentration because of the
shorter dislocation distance for larger mismatch angle according
to themodel ofDDL/L0≈ 1/θ in ref 16 (orDDL/L0≈ 1/tan θ in ref
15). The BCP microdomain array of Æ21æ as well as its orienta-
tional distribution is present in Figure 7. Both kinds of large
grains with two different orientations are commensurate with
the field-pattern lattice. This is very similar to the observation
of Figure 4a in ref 32, although our field-patterned films are
different from their postpatterned films.

Figure 5. Orientation distribution of block copolymer microdomains
for Æ40æ (left column) and for Æ60æ (right column) at time t=104 (upper
row) and 105 (bottom row).

Figure 6. Time evolutions of the defect concentrations for two field
patterns of Æ21æ and Æ32æ. The decimal values of Ls/L0 used by us are
Ls/L0 = 2.646 and Ls/L0 = 4.360 for Æ21æ and Æ32æ, respectively.

http://pubs.acs.org/action/showImage?doi=10.1021/ma9023203&iName=master.img-004.jpg&w=240&h=220
http://pubs.acs.org/action/showImage?doi=10.1021/ma9023203&iName=master.img-005.png&w=171&h=151
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When preparing the field-pattern lattice, it is possible to
introduce an incommensurability between the field-pattern lattice
and the BCP domain lattice. How big incommensurability can be
tolerated without breaking the long-range order is a interesting
problem. Here we consider a small incommensurability in the
pattern of Æ20æ by making Ls/L0 deviate from the integer of two.
The dynamic functions of the defect concentrations for four
values ofLs/L0 = 1.90, 1.92, 2.08, and 2.10, which correspond to
-5,-4, 4, and 5%deviations from 2 are shown in Figure 8. Only
the time evolution of Ls/L0 = 2.08 among the four evolution
functions, whose curve looks close to a linear form, is fast-
exponential decay. Compared with the case of Ls/L0 = 2.08,
that ofLs/L0= 1.92 has faster decay at short time, but it becomes
much slower at long time. This suggests that it is possible to
observe higher density defects in the patterned filmswith negative
4% than in those with positive 4% deviations from Ls/L0 = 2.
Similar phenomenon has been observed in the experimental work
done by Tada et al.30,31 In Figure 12 of ref 30, the BCP domains
are perfectly orderedwhen the field pattern is commensuratewith
the domain lattice with Ls = 48 nm and L0 = 24 nm. When the
field-pattern spacing deviates from 48 to be 50 nm (about 2.08L0)
in Figure 13b of ref 30, the perfect-ordered BCP domains can still
be formed. However, when Ls = 61 nm for L0 = 32 nm (Ls/
L0 ≈1.91), the ordering becomes obviously worse. (See Figure
11a of ref 30.) Even forLs=62 nm (Ls/L0≈1.94) inFigure 11bof
ref 30, the ordering degree still looks worse than that of Ls/L0 =
2.08 in Figure 13a,b of ref 30, where Ls/L0 ≈ 1.96, suggests
that the orientation of the domain lattice is slightly distorted.
In our calculations, we also carried a similar simulation with

Ls/L0 =1.96 (because the evolution time for perfect ordering is
shorter than 2 � 104, we do not show the data), and we find that
the BCP domains can be ordered perfectly. The comparison of
results betweenLs/L0=1.96 andLs/L0=1.92 in our simulations
indicates that the ordering process is quite sensitive to the
magnitude of the incommensurability. This can explain why
our results are different from that of experiments for Ls/L0=
1.96. The reason is that it is not ensured that Ls/L0 is measured
accurately in experiments. Smallmeasurement errormay result in
a low-degree of imperfectness to the domain lattice. When the
deviation is increased to be 5%, the long-range order is destroyed
by the presence of >0.5% defects. The long-range order is
determined by the competition between the surface interaction
enthalpy and the entropic-energy penalty of BCP chains. When
the deviation is small (<4%), the surface interaction dominates
andmakes the BCP chains be stretched or compressed to keep the
domain lattice to match the field pattern. As the deviation
becomes large (∼5%), the entropic-energy penalty is comparable
to the surface interaction enthalpy. The gross order of the domain
lattice can still remain, but a fewdefects are formed to release part
of the entropic-energy penalty. However, when the deviation is
further increased (>5%), the surface interaction cannot make up
the loss of chain entropy, and polycrystalline grains are observed.
Note that the tolerated critical deviation, breaking the long-range
order, is much larger in experiments (∼10%).30 This is because
the critical deviation depends on themultiple. In experiments, the
results are for Æ10æ, and our results are for Æ20æ. It hints that the
tolerated critical deviation decreases as the potential-well lattice
becomes sparser. To check this point, we simulate the Æ30æ field-
patterned film. In this system, we find the appearance of an
imperfectness when Ls/L0 = 3.05. In very recent experiments,31

Tada et al. observed considerable defects for the case of nine-fold
multiplication when Ls/L0 = 3 ( 0.08. In their results, the
regularity of positive deviation of Ls/L0 = 3.08 is better than
that of negative deviation ofLs/L0= 2.92. This is consistent with
our results qualitatively.

IV. Conclusions

In summary, we have performed large-scale simulations on
the ordering dynamics of the BCP microdomain formation in
the field-patterned films by using cell dynamics simulations. The
time evolutions of defect concentrations are used to measure the
ordering dynamics of the BCP domains. First, we studied
the effect of field patterns Æi0æ with i = 3, 4, 5, 6. By comparing
their time evolutions of the defect concentrations, we find that
perfect ordering can be achievedwhenLs/L0e 4. Then,we carried
examinations on Æijæ field-patterned films with i � j 6¼ 0. For this

Figure 7. BCPmicrodomain array and its corresponding orientational
distribution for Æ21æ. Red spots indicate the position centers of the field
spots.

Figure 8. Time evolutions of the defect concentrations for the field
pattern Æ20æ with the lattice spacing Ls/L0 deviating from the integer of
two. The connected lines are just for the guide to eye.
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kind of field pattern, we observed the formation of large poly-
crystalline grains with two lattice orientations. Finally, we
investigated the tolerance of the incommensurability between
the field-pattern lattice and the domain lattice for the case of Æi0æ.
We find that the tolerance of incommensurability for the forma-
tion of perfect ordering depends sensitively on the spacing of the
field patterns. For Æ20æ, the perfect ordering of BCP domains can
be kept when the deviation of Ls/L0 is <4%.

To focus on the influence of the chemical-field pattern on the
formation of BCP microdomains, we simplify the films to a 2D
system without considering the thickness effect. When the thick-
ness of thin films is appropriate for perpendicular-cylinder
formation, this simplification is valid. Because the size of our
simulated films is as large as micrometers by micrometers, our
results are helpful to understand available experimental observa-
tions. In addition to diblock copolymers, because the free energy
functional used here can describe a wide variety of systems with
strong wavelength selectivity, such as Langmuir films ferrofluids
or magnetic garnets,44 the results can be used to predict the
dynamic behaviors in these systems.
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